**Circuit Analysis theory and practice By Robins and Millers ::**Robins and Millers’s book is one of the recommended books for the electrical students. As this covers both electronic circuit analysis and electrical circuit analysis.

**Circuit Analysis theory and practice By Robins and Millers**

This book totally has 5 parts as follows:

- Foundation DC concepts
- Basic DC analysis
- Capacitence and Inductance
- Foundation AC concepts
- Impedance networks

The book contains 25 chapters and is divided into 5 main parts: Foundation dc Concepts, Basic dc Analysis, Capacitance and Inductance, Foundation ac Concepts, and Impedance Networks.

Chapters 1 through 4 are introductory. They cover the foundation concepts of voltage, current, resistance, Ohm’s law, and power.

Chapters 5 through 9 focus on dc analysis methods. Included are Kirchhoff’s laws, series and parallel circuits, mesh and nodal analysis, Y and transformations, source transformations, Thévenin’s and Norton’s theorems, the maximum power transfer theorem, and so on.

Chapters 10 through 14 cover capacitance, magnetism, and inductance, plus magnetic circuits and simple dc transients.

Chapters 15 through 17 cover foundation ac concepts; ac voltage generation; and the basic ideas of frequency, period, phase, and so on. Phasors and the impedance concept are introduced and used to solve simple problems. Power in ac circuits is investigated and the concept of power factor and the power triangle is introduced.

Chapters 18 through 25 then apply these ideas. Topics include ac versions of earlier dc techniques such as mesh and nodal analysis, Thévenin’s theorem, and so on, as well as new ideas such as resonance, filters, Bode techniques, three-phase systems, transformers, and nonsinusoidal waveform analysis. Several appendices round out the book.

Appendix A provides operational instructions, reference material, and tips for PSpice and Multisim users

Appendix B is a math-and-calculator tutorial that describes typical mathematical and calculator usage in circuit analysis—including methods for solving simultaneous equations

Appendix C shows how to apply calculus to derive the maximum power transfer theorem for both dc circuits and ac circuits, while Appendix D contains answers to odd-numbered end-of-chapter problems.

**Book Contents **

PART I Foundation dc Concepts 1. Introduction

2. Voltage and Current

3. Resistance

4. Ohm’s Law, Power, And Energy

PART II: Basic dc Analysis

5. Series Circuits

6. Parallel Circuits

7. Series-Parallel Circuits

8. Methods of Analysis

9. Network Theorems

PART III Capacitance and Inductance

10. Capacitors and Capacitance

11. Capacitor Charging, Discharging and Simple Waveshaping Circuits

12. Magnetism and Magnetic Circuits

13. Inductance and Inductors

14. Inductive Transients

PART IV Foundation AC Concepts

15. AC Fundamentals

16. R, L, and C Elements and the Impedance Concept

17. Power in AC Circuits

PART V Impedance Networks

18. AC Series-Parallel Circuits

19. Methods of AC Analysis

20. AC Network Theorems

21. Resonance

22. Filters and the Bode Plot

23. Transformers and Coupled Circuits

24. Three-Phase Systems

25. Nonsinusoidal Waveforms

**Required Background **

Students need a working knowledge of basic algebra and trigonometry and the ability to solve second-order linear equations such as those found in mesh analysis.

They should be familiar with the SI metric system and the atomic nature of matter. Calculus is introduced gradually into later chapters for those who need it.

However, calculus is not an essential prerequisite or corequisite, as all topics can be readily understood without it.

Thus, students who know (or are studying) calculus can use this knowledge to enrich their understanding of circuit theory, whereas, because the calculus parts of the book can be omitted without any loss of continuity, students unfamiliar with calculus can comfortably navigate around it as they work through the chapters.

**Download also Schaum’s Outline of Basic Circuit Analysis PDF**

** **

**Buy PaperBook:Circuit Analysis: Theory and Practice**

**Circuit Analysis: Theory and Practice PDF**

Author(s): Allan H. Robbins, Wilhelm C Miller

Publisher: Cengage Learning, Year: 2012

ISBN: 1133281001,9781133281009

**Circuit analysis theory and practice 5th edition PDF**

**Circuit analysis theory and practice 5th edition PDF**